AD-A178 484 A] ™ acnsrs i

IN:
] ~8~-C-
UNCLASSIFIED /G 9%22

ll2
I

2

MICROCOPY RESOLUTION TEST CHART

rrr

NATHONAL BUREAG

(FFPEEER
EEEE

-
g
o

r
re

[N

N o<
wn

E]
N
()

=
B

4 STAN[ARDS

o

PRI

MASSACHUSETTS -

LABORATORY FOR %% AT S
T UL TECHNOLOGY

COMPUTER SCIENCE ¢ 7

MET TS TR 380

AD-A178 404

A SIMUTATION ENVIRONMENT
FOR SCHEMA

Naroaret Ann St Prernre

I <}Hlf1\‘1 RN

VOLLOHNOT OGN SOTARE CAMBRIDGE M ASS AL

Unclassified

| LASSIFI ION THIS PA!

A/ 75404 /&

REPORT DOCUMENTATION PAGE

e e
1a. REPORT SECURITY CLASSIFICATION

1b RESTRICTIVE MARKINGS

M
2a. SECURITY CLASSIFICATION AUTHORITY

e T e T vy TV B¢y~ Tyl
3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Releasej;distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited

4. PERFORMING ORGANIZATION REPORTY NUMBER(S)
MIT/LCS/TR-386

S MONITORING ORGANIZATION REPORT NUMBER(S)
DARPA/DOD N00014-80-C-0622

6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

MIT Lab for Computer Science

7a. NAME OF MONITORING ORGANITATION

Office of Naval Research/Dept. of Navy

6¢c. ADDRESS (City, State, and ZIP Code)

545 Technology Square
Cambridge, MA 02139

7b. ADDRESS (City, State, and ZIP Code)

Information Systems Program
Arlington, VA 22217

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
DARPA/DOD
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS Pl
1400 Wilson Blvd. PROGRAM PROJECT TASK 4 JIWDR &
Arlington, VA 22217 ELEMENT NO. NO. NO - ,;‘6

e

11. TITLE (Includle Security Classification)

A Simulation Environment for Schema

o A S

. VN\P\R?‘

12. PERSONAL AUTHORI(S)
St, Pierre, Margaret Aﬂrl

v

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT

L _Technical FROM To______ 1986 December 63
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP CAD, VLSI, simulation

~ircuits at various levels of detail.

uniform interface to the user and to all CAD

into the Simulation Environment in Schema, an integrated CAD system,
incorporates additional simulators, serves as a foundation upon which to build new analysis
tools, and provides the ability for mixed-mode simulation.
composed of common data representations, a Generic Simulator, and a single user interface.
A common representation for topological, model, and waveform data objects facilitates a

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

"‘In present day circuit design, many independent simulation tools are available for analyzing
This thesis presents a tramework to tie these tools

The framework easily

The Simulation Environment is

tools. The Generic Simulator coordinates the

flow of data objects between each simulator and the user or analysis tool.‘\

S
I
N

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

) UNCLASSIFED/UNLIMITED (] SAME AS RPT. [DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDUAL
Judy Little

22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

(617)523-5894

DD FORM 1473, 8a MAR

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

MULS. Governms-* Printing OMan: WES-807.047

Uncl~ sified

A Simulation Environment for Schema

by

Margaret Ann St. Pierre

Accossion For

NTIS GRA&I
DTIC TAB
Unannounceqd]

Justificaty om_;_q
—

By

DistA:‘ribut lon/

Cuopyright (© 1286 Massachusetts Institute of Technelogy

Support for this research was provided by the Defense Advanced Research Projects Agency of

the Department of Delense under Contract No. M00014-80-C-0622.

kaLECTEw

E

A Simulation Environment for Schema

by

Margaret Ann St. Pierre

Submitted to the Departiment of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for
the degrees of Master of Science and Electrical Engineer

Abstract

In present day circuit design, many independent simulation tools are avaitable for analyzing cir-
cuits at various levels of detail. This thesis presents a framework to tie these tools into the
Simulation Environment in Schema, an integrated CAD system. The framework easily incor-
porates additional simulators, serves as a foundation upon vhich to build new analysis tools, and
provides the ability for mixed-mode simulation. The Simulation Environment is composed of
ccmmeon data reprcsentations, a Generic Simulator, and a single user interface. A common
representation for topotogical, model, and waveform data obiects facilitates a uniform interface to
the user and to all CAD tools. The Generic Situlator coordinates the low of data objects be-
tween cach simulator and the user or analysis tool.

T'hesis Supervisor: Professor Richard Zippel
Hitle: Associate Profossor of Electrical Engineering and Ceniputer Science

Key Words and Phrases: CAD, VLSI, simulation

N

Acknowledgments

{ would like to thank:

My thesis advisor, Rich Zippel, for the inspiration, focus, and encouragement that made this
thesis possible, for fathering the famous ski resorts upon which this thesis work was implemented,

and for providing me with quiet officespace.
Brian Williams for many stimulating discussions and suggestions along the way.

Jeff Arnold, Randy Davis, Steve Heller, and Jerry Roylance for comments on early drafts of

this thesis.
George Clark and Mike MacDonald for giving unity to Schema.
My friends back at the Schema Chalet.
Moses Ma, Peter Nuth, and Pete Osler for interesting non-technical discussions.
Jim Restivo for faithfully escorting me to and beyond the finish line.

My family for their tove and support throughout my many years of academia.

Table of Contents

Chapter One: Introduction

1.1 Motivation

1.2 Design Goals
1.2.1 Inlegrating Simulation Tools
1.2.2 Building Analysis Tools
1.2.3 Mixed-mode Capability

1.3 Overview of Thesis

Chapter Two: Design Methodology

2.1 Simulation Domain
2.2 Design Strategy
2.3 What is a Simulaticn Environment?
2.3.1 Cotamon Representation
2.3.1.1 Objects
2.3.1.2 Cbject Types
2.3.1.3 Appropriate Types
2.3.2 The Generic Simulater
2.3.2.1 Internal Simulation
2.3.2.2 External Sirmulation
2.3.3 Uniform Interface

2.3.4 Accomplishing the Design Goals

2.4 implementation in Schema
2.4.1 Hierarchical Organization
2.4.2 Conatraint Network
2.4.3 Creation on Demand

2.5 Summary

Chapter Three: Topology

3.1 Madule Definition
3.1.1 Uniform Representation
3.1.2 Module interconnectinn
3. 1.3 Module Definition Creation
3.1.4 Uniform User Interface
3.2 Delining New Module Types
3.2.1 Simple Modules
3.2.2 Compound Modules
3.2.3 Abstract Modules
3.3 Detining New Module Operations
3.4 Summary

Chapter Four: Models

4.1 Uniform Representation
4.2 Uniform User Intertace
4.3 Defining New Model Types
4.3.1 Models Without State
4.3.2 Models With State
4.4 Defining New Model Operations
4.5 Summary

Chapter Five: Waveforms

5.1 Uniform Representation
5.2 Uniform User Intertace
5.3 Display Types and Waveform Types
5.3.1 Analog Waveforms
5.3.2 Binary Waveforms
5.3.3 Defining New Displays and New Waveform Types
5.4 Mixed-Mode Capability
5.5 Summary

Chapter Six: Generic Simulator

6.1 Uniform User Interface
6.2 Initiation Phase
6.3 Initialization Phase
6.3.1 Locating Appropriate Modules
6.3.2 Interconnection of Appropriate Modules
6.3.3 lLocating Appropriate Waveforms
6.3.4 Aitaching Appropriate Waveforins
6.3.4.1 Input Waveforms
6.3.4.2 Output Waveforms
6.2.4.3 Mapping Waveforms onto Nodes
€.3.4.4 Mapping Wavzforms onto Pins
6.3.5 Localing Appropriate Models
6.4 Execution Fhase
6.4.1 Interna! Simulation
6.4.2 External Simulation
6.5 Completion Phase
6.6 Suinmary

Chapter Seven: Discussion

7.1 Summary
7.2 Implementation: The Simulation Fnvironment Layer

7.3 Future Work: The Concurrent Mixcd-Made Simulation Layer

7.4 Conclusion

References

e e o M. . 'S

—

8 & £249888¢%

41
42

S&EER

46

47

Table of Figures

Figure 2-1: Simulation Environment in Schema.
Figure 2-2: Hierarchical organization of Schema.

Figure 3-1: The topology and its placement in the hierarchical organization of Schema.

Figure 3-2: Inverter module definition and corresponding schematic presentation.

Figure 4 1: Models and their placement in the hierarchical organization of Schema.

Figure 5-1: Waveforms in the hierarchical organization of Schema.

Figure 6-1: Mapping of a single simulation node onto electrically eqguivalent nodes of a
terarchical module definition.

Figure 6-2: Summing current waveforms, current-1 and current-2, to produce
current-sum for pin of a hierarchical module.

Chapter One

Introduction

Circuit design requires the assistance of a comprehensive range o! computer aided design
{CAD) tools. many of which either currently exist or are under development. Individually, each
tool addresses a specific task in the design process. As an integrated collection, however, the
tools share data and tasks across all stages of the design process. Unfcrtunately, no one system

has eftectively integrated the collection into a single design environment.

Research on such an environment is presently underway at M.LT. with the development of
Schema [Ziopel 85]. Schema research focuses on providing a softwara environment for easily
integrating ali CAD tools necessary for design and allowing the effor'ess building of new tools
into the existing system. One area of major interest in Schema and of circuit design in general is
simulation. Fatal design errors are detected and circuit performance is measured by simulating
the operation of electronic designs. In this way, simulation invaluably cuntributes lo the success

of high-performance circuit designs and is a vitat component of any CAD uystem.

This thesis presents a Simuiation Environment ior Schema following in the footsteps of

the integrated software design envircnment established in Schema.

1.1 Motivation

Many simulators have been developed to satisfy different design needs using a single
modeling lcvel of circuit abstractien. Olten the designer is overvshelmed by the need to learn the
op-ration of and to manually recode circuit descriptions far each individual simulator. In addition,
cutput waveforms associated with one particular circuit module’s simulaiion must be interpreted
and manually translated far use as input to come other interconnactzd module's simulation.

Because of the massive tine investment required, this process is typically omitted altogether.

The recent frend bas ouea towards mived-mode sisnulation wierchy different lovels of

simutation are consolid:ied into un= softwiue peckage. At thoe high end, the Sable [Hill 79, Hill 80]

Chapter 1 Introduction

system combines behavioral, register transfer, and gate level descriptions. Similariy,
Themis [Doshi 84] addresses simulation at the behavioral, register transfer, logic, and switch
levels. Both simulators deal exclusively in the digital domain, however; neither includes circuit,
timing. or tinear level madels, which are critical to the design of high-performance circuits. On
the low end, concurrent circuit, timing, and logic analyses are illustrated in both the Diana [Arnout
78, Antognatti 84] and Splice [Newton 78, Newton 79] systems. In addition, the second genera-
tion Motis [Chawla 75, Fan 77, Chen 84, Antognetti 84] program combines timing, switch, and
logic level simulators into one software package, running on a single mainframe; accuracy is
reduced by omitting the cletailed transistor modeis available in a circuit level simulator such as

Spice2 [Nagel 75, Cohen 76).

These and others [Nestor 82, Thomas 83, Borrione 83, Lanthrop 85] are attempts to com-
bine simulators using a range of modeling levels into a single software program. One disadvan-
tage of this single system approach is a loss in computational efficiency. With increasing in-
tegrated circuit complexity, the computational power required for simulating very large circuits
becomes a major boitleneck o the design effort. Even the use of the most advanced hardware
and software technology inevitably results in extensive execution times for a single system.
Expensive design c¢ffort is halted while waiting upon simulation results. Another cost is incurred
from discarding old, yet still usable simulators to invest in software reccding for a mixed-mode
system. For example, in an effort to provide an integrated computer aided design system for
Sandia, a substantial amount of manpower was invested in understanding, recoding, and debug-

ging undocumented industry and university softvare programs [Daniel 82).

With the accelerated advancement of today's technology, new simulators are continually
ting develuped using state-of-the-art hardware technology, and more efficient, optimized, and
sophisticated alqorithms. Dramatic speed improvemenis are achievable with special-puipose
hardware, such as the Yorktown Engine [Plister £€2]) and the Logic Simulation
Machine [Abramovici 83, and highly parallel algorithms, such as Prsim [Arnold 65] and

Meanhice [Deutsch 84] designed spocifically for multi-processor systems.

Simulation alone cannot guarantee the success of toduy's high performance circuits. In
conjuncticn with simulalion, analysis tools are an essential ingredient of the dosign process.
Analysis iools operate on simulition data This data may pertain to one sirulation, multiple

simulations, or ultimately different sitnulation Icvels. Perforinance evaluation, verification of

-/

Chapter 1 Introduction

simulation results against specifications, and circuit partitioning for different levels of simulation
are just a sampling of invuluable analysis tools. Analysis tools also instigate simulations. An
analysis tool may schedule a series of simulations to compare the performance of different

designs or the behavior cf a single design in ditferent operating regimes.

Each analysis tool is simple to build, yet creating a simulator and user interface for each is a
major undertaking. In etfect, the existence of the analysis tool alone is not justified. For example,
mathematical operatiors on waveforms are useful for analyzing circuit simulation results. For
instance, power consumption over time amounts to a simple multiplication of waveforms, yet
without a graphical user interface and a simulator interface, the tool is unusable. The designer
would be fcrced to manually enter the simulation data points - a tedious, error-prone, and time-

consuming task - as well as interpret the numerical output data.

1.2 Design Goals

A framework is essential to tie simulation tools into a common environment. This thesis
presents such a framework: & Simulation Environment for Schema. The framework is

designed te eacily inlegrate simulation tools, to serve as a fouadation for building new analysis

teuls, and o provide mixed-mode capability. The following sections detail each of these design

goals.

i.2.1 Intearating Simulation Tools

The Simulation Environment is designed with the ability 1o readily integrate new as well as
currently existing simulation tools. Simulation of all modeling levels may ve easily incorporated;
this includes tools exploiting each of the various !ransistor modaling levels and the simulators that
address the more abstract circuit representations Without slowing down the user's design ctfort,
simulation can be distributed to another local process nr remote engine tha can efficiently run
the simulaticn. Distributing the effart among whatever engines are currently available, and poten-
tinlly least Inoaded, enhances the overall computational powar of the designer's environment.
Furthermor2, because a large amount of time, maney, and etfort went inlo developing and main-
{eining the cxisting simulation tools, they could remain constantly in use - greatly enhancing
computationul power. Adding new simulators allows the environment to keep pace with the rapid

development of new hardware and software simmutation engines.

Chapter 1 Introduction

1.2.2 Building Analysis Tools

The Simulation Environment could serve as a foundation for building an unlimited number
of powerful analysis tools. Automatic partitioning algorithms can be developed for partitioning
large-scale circuits into a coliection of blocks to be individually simulated at different modeling
levels. Ancther tool could schedule a series of simulations for each biock to verify that it meets
specifications Additionally, smal! analysis tools could be designed to compare the results of
different siinulations or to perform operations on simulation output. Coinparison and evaluation

of the performance of new simulators could even be exccuted by an analysis tool.

1.2.3 Mixed-mode Capability

Miced mode refers to transforming the output data from one module’s simutation for use as
input to an interconnected module's simulation, where each module may be modeled at different
levels of detail. For example, certain portions of a design may require the accuracy of a circuit
simulation, while tor other less critical portions, a less exact switch or logic level simulation is
most appropriate. Both require simulation, yet using different simulators. With the mixed-mode
capabdity, the Simulation Enviconment transtorms the cutput analog waveforms from the circuit

simulalion into logic waveforms for use in the switch or logic leve! simulation, and vicc versa.

1.3 Overview of Thesis

Chapter 2 opens with a briel overview of the types of simulatoirs available. This naturally
leads into a discussion of the goals of the Simulation Environment and the approach taken to
achieve them, Next each component of the Simulation Environment is briefly described: the
uniform dat 1 representations, a Generic Simulator, and « common user interface. The chapter
closes with a discuassion of the techriiques available in Scherna that are vseiul to the Simulation

Environment.

The circuit topology, models, end wavetorms are the data required for simulation. Their
uiiform representations and user interface are discussed in Chapters 3, 4, and 5, respectively.
Vihen integrating additional sinulators or building rew analysis tools, only new data types and

Incal operitinns nead to be defined as described in the lalter sections of cach chapter.

Chapter 6 describes the role of the Generic Simulator in the Sir.wation Environment. The

10

Chapter 1 Introduction
Generic Simulator contains the simulation tools of the environment and generically interfaces
them to the objects in the environment, to the user, and to the analysis tools. This chapter

presents each step of the Generic Simulation Process.

Chapter 7 concludes with a summary of the Simulation Environment for Schema recounting
the properties achieved. Suggestions for possible future analysis tools are cited. These tools

could be easily built on top of the Simulation Environment in Schema.

11

Chapter Two

Design Methodology

The currently available simulators are rcviewed with respect to ir.put and output data re-
quired for each. Next, a design strategy is developed to tie these simulators into a single
Simulation Environment. Each component of the Simulation Environment is defined along with its
corresponding role in the simulation process. And finally, the implementation of the Simulation

Environment within Schema is presented.

2.1 Simiulation Domain

Many simulators have been developed to satisfy different design needs throughout the
various stages of the design process. This section briefly describec the different kinds of
simulators in use today. Notably, each simulator utilizes different algorithms, accepts input such
as a circuit description, excitation signals and perhaps some modeling parameters, and ultimately

produces output data.

Circuit sunulators provide the most detailed level of simulation; node voltages and branch
current waveforms are calcuiated and plotted. General purpose circ.iit simulators, such as
Spice2 [Nageld 75, Cohen 78] and Astap [Weeks 73], apply generai algoritinms for non-linear static,
linear ac, and non-linear transient analyses. Circuits may contain capacitors, resistors, inductors,
mutual inductors, voltage and current sources, and a wide range of nonlinear active devices
including diodes, bipolar junction transistors (BJTs), junction field-effcct transistors (IFET3), and
metal-oxide-semiconductor (MCS) field-effect transistors (FETs). Each semiconductar device is
modeled with a set of process parameters. Spice2, for example, bas three built-in types of MOS
device models: Shichman and Hodges, analytical, and scmi-empirical models. At this level of
detail, circuit simulators are generally cost effective for circuits with a few hundred devices or
less. Execution time can be increased by replacing analytic device models with simplified table
look-up models relating device current to terminal voltages. These general-purpose circuit

simulators are largely independent of technology. If simulation algorithias are tailored to specific

12

Chapter 2 Approach

technologies or applications, substantial speed improvements can be achieved. To take advan-
tage of the unitateral nature of MOS devices, relaxation-based circuit simulation [Dumiugol
83, Newton 84] algorithms prcvide up to a twolold increase in simulation speed over gencral-

purpose circuit simulators.

The linear-model simulator Rsim [Terman 83] represents MOS transistors as resistors in
series with a voltage-controlled switch. This model provides logical and approximate timing
information. Logic behavior is determined by a fast event-driven algorithm; transition times
depend upon on effective transistor resistance, and interconnect and gate capacitance. Using
this simplified linear model, networks containing up to 50,000 transistors may be simulated.

Instead of node voltages and branch currents, discrete logic states at network nodes are used.

Switch-level simulators such as Mossim [Bryant 81] and Esim [Terman 83] model MOS tran-
sistors as a network of on/off swilches. This model captures the logical properties of a circuit
while ignoring many of the detaited electrical issues. A switching network is most appropriate for
simulating the bidirectional nature of MOS transistors. Furthermore, since so little modeling
information is retained for each transistor, this type of simulator is able to handle larger scale
designs. Signals are lypically represented in terms discrete legic states in unit-delay time se-

quence.

A simplification of the switch-level simulator is the unidirectional gate-level logic simulator,
which uses NOT, AND, OR, NAND, and other combinational loyic gates, and state-preserving com-
ponents such as flip-flops and counters. This simulator solves simple bocican equations to obtain
the output state of the logic components. Timg may be in unit delay intervals or variable delay,
which more closely models continuous time. Unfortunately, not all MOS gate-level elements,
specifically pass transistors, are unidirectional in nature, and thus are not suitable for gate-level

simulation.

Register-transfer level simulato:s [Hafer 83, Lewke 83] deql with the overall structure and
architecture of a design. Modules, such as tull adders and systolic arrays, are specitied by
procedural descriptions. Because they simulate more abstract modules and their representation
ot signals is sonmiewhat courser than in the logical case, register-transfer level simulators are

usually over an order of magnitude faster than gate-level simulaiors for the same circuit.

At the highest level of abstraction, behavioral or functional simulators are used at the initial

13

- R

Chapter 2 Approach

design phase to verify the algorithms of the abstract system to be implemented. In contrast to the
register-transfer level simulator, the actual structure of the circuit is not necessary for this type of

simulation.

2.2 Design Strategy

The first question to answer when developing a new system is "Wnat are the design goals
of our system?”. The Simulation Environment ties together the simulators needed by all phases of
the circuit design process. More specifically, the Simulation Environment in Schema provides (1)
simple extensibility for incorporating additional simulators, {2) a foundation for building and in-
tegrating new analysis 100!s, and (3) the capability to perform mixed-mode simulation. These are

the major design goals of the Simulation Environment.

A uniform interface is a natural consequence of the aforementioned design goals. This
can be viewed from two perspectives. For the designer of CAD software, a unitorm CAD interface
facilitates additional simulation tools as well as providing the groundwork upon which to build
new analysis tools. For the user of CAD software, a commaon interface eliminates the unnecessary

task of learning the operation of each individual tool.

The question remaining is "What approach or desiqn strategy leads to thesc desired
properties?”. Common data representations make it possible to create a uniform interface to
the user, the simulators, and the analysis tools. The following sections describe the Simwulation

Envirecnmeilt in Schema, and how this approach achieves the design goals.

2.3 What is a Simulation Environment?

The major components of the Simulation Environment are: a Generic Simulator, common
data represenlations, a single user interface. [Iigure 2-1 depicis the intcractions of each com-
ponent within Schema. The Generic Simulator coordinates the flow of information between the
cimulation initiator and the individual simulator:. The medium for information How is a common
data representation, and finally the user intcrfoce provides a slick graphical interaction with the

underlying data structures.

The Generic Simulator acts as an interactive guide in the Generic Simulation Process:

14

Chapter 2 Approach

Simulation !
Environment (SimulatorN
I L)

Simulatord

Siwaulataor2

Simulatort]_k

goneric Simulator

/ﬂ ______________
X i |
Uniform | j\\‘\
Yoo <« Data <P
ﬁ
Interface Ropresentations |
—_—— i Analys{s
R SN | Tcolbag
S — e e e e

Figure 2-1: Simulation Environment in Schema.

1. The user interacts with the Simulation Environment by way of the user interface.
Analyzis tools interact directly with the Simulation Environment Once the ap-
propriate input data has been entered, cimulation is initiated by the user or by an
analy;is tool. At this time the initiator chooses a specific simuiator from among a rich
variety of available simulators and selects a specific region of a circuit for simulation.

2. The Generic Simulator initializes input data tor simulation. This may require a trans-
lation of the input data to the form required by the selectnd simutator. Prior to execu-
tion the Generic Simulator interactively notitics the initiator in the 2vent of any am-
biyuities, inconsistencies, or undefined quantities.

3. The simulaticn is performed.
4. The Gencri: Simulator interprets the outiut data and transforms it into a common

representation. The results are then presented to the user, again via the user inter-
face, or are made directly available to the analysis tocls.

15

Chapter 2 Approach

The following sections take a closer look at each component and its role in the develop-
ment stages of the Simulation Environment. The final section discusses the contribution of each

piece toward the design goals.

2.3.1 Common Representation

2.3.1.1 Objects

For electronic simulators, typical input data comprise circuit topology, modeling
parameters, and excitation signals; typical output data are the resulling waveforms. Thus, the
basic entitics or objects the Simulation Environment must supply to the Generic Simulator are
circuit topologies, models, and waveforms. Dctermining what objects exist is the first task in

designing the Simulation Environment.

For each object to be accepted by a simulator, a corresponding object in the Simulation
Environment is defined. Within Schema, a circuit design is made up of components called
modules. Modules and their interconnections are supplied by the circuit topology. Each module
may contain some local mode! information. For example, transistor modutes may have threshold
voltages or logic gates may have propagation delays as part of their modal. And finally, signals
are the waveforms associated with the input to and the output from simulators. In general, these
objects represent the data essential for simulation, and thus essential to the Simulation

Environment.

2.3.1.2 Object Types

The ncxt task is to further subdivide the types of topoloyy, moded, and waveforin objects
required in the Simulation Environment. This subdivision is dictated by the types of objects
each simulation tool simulates. A transistor, for example, has a vwon-lincar, linear, and switch
model; thus, these model types should be made available in the Simulation -nvironment. Similarly
a circuit-level simulator accepts topological modules including resistors, capacitors, transistors,
and waveforms such as exponenlial or piece-wise linear voltages and currents. The subdivision
of topological, model, and waveform types is explored further in Chanter 3, Chapter 4, and

Chapter 5, respactively.

There is an overlap in the: types of topological, model, and waveform objects accepted by

16

Chapter 2 Approach

each simulator. An example of a topological module is the transistor. Although circuit, linear, and
switch level simulators all simulate the transistor, it is not necessary to define a different transistor
object in the Simulation Environment for each individual simulator that simulates it. The objects
defined in the Simulation Environmant are the union of the object types that could possibly be
simulated by any of the simulation toois. This is the key idea behind a common representation for
data objects in the Simulation Environment. The user interface, the Gereric Simulator, and the
analysis tools built into or integrated on top of the Simulation Environmerit all interact with these

uniform data objects.

2.3.1.3 Appropriate Types

Of course, not all objects defined in the Simulation Environment will be accepted by each
simulator. A logic level simulator for instance does not simutate capacitor moudules, and exponen-
tial voltage waveforms. Thus, associated with each simulator is a specific set of appropriate
module, model, and waveform types. These represent the tynes of objects each simulator ac-
cepts. Incorporating a new simulator requires the speciticatinn of a set 5t appropriate module,

model, and waveform lypes.

While some simulators handle different types of iodules, other simulators share some of
the same types of mcdules. Circuit, linear, and switch-level simlators all hiave the MOS transistor
as an appropriate meaule type. But each of these simulatois uses a diffeiont model for the MOS
transistor module type. A major feature distinguishing one kind ot simulator over anouiher is the
models it associates with its modules. For any yiven apprepriate module lype, there may be one
or more agpropriate model types. For the circuit simulator Spice2, no model is expected for

modules of {yp< resistor, yet for the MOS transistor, three moda2i types are possible.

Simuiator seloction also restricts the appropriate waveform types: different signals are re-
quired for different simulators. Veltage and current waveforins are aexpected for a circuit-level
analysis, and binary waveforms are required for switch or logic level analysis. To support the
mixed-mode capability of the Simulation Environment, if signals of one type can be transtormed
into another type acceplable 1o a specific simutator, these types are also part of the simulator's
set of appropriate wavetorm types. If a transformation operation on a binary signal can produce a
valtage signal for a circnit simulation, then binary as well as the voltage signals are approgpriute

signal types for a circuit simulation.

17

Chapter 2 Approach

In summary, the object types in the Simulation Environment are the union of the types of
objects handled by the different simulators. As every simulator does not accept all types of
objects defined in the Simulation Environment, a set of appropriate types are associated with

each simulator.’

2.3.2 The Generic Siimulator

The Generic Simulator is made up of many simulators, and treats each component
simulator as a black box. It is only responsible for supplying input to and obtaining output from
the black box. Thus the Generic Simulator need never know about the internat workings of each
component simulator. From outside the Generic Simulator, the user and the analysis tools per-
ceive the Generic Simulator as a black box. Furthermore they never nced to interact with the

simulators within the Generic Simulator.

The Generic Simulator interactively coordinates the flow of topology. model, and waveform
objects between the simulation initiator and each individual simulator. This entails obtaining the
input data from the user or analysis tcol, supplying the data in the represcatation required for the
simulator, invoking simulation execution, interpreting the resulting outpui data, and placing the

output data into the Sunulation Environment for future analysis.

The Generic Simulator interacts wilh two kinds of simulalors: internal and external. An
Internal Simulator directly manipulates the data objecls present within the Simutation
Environmenit, in much the saime way an analysis too! built on top of the Simulation Environment
would. In this ¢case, the simulation initiator has the opportunity to iater wstively controd simutation
execution; output signals can be moniiored in real ime. On the other hand, an extorn2! simulator
creates its ovvn data structures. External simulators typically exist on a remote processor(s) using
a separate address space. Computationally intencive simulations are sent off 1o special-purpose
hardware or multiprocesser systems without inhititing the speed ol thie Simulation Environment's
current prccess. The combination of internal and external simulauon oficrs the advantages of

buth strategies and permits alarge degree of fiexibility in simulation.

The Generic Simulator expects the objects in the Simulation Environment to perform cer-

1
Ihe sets of appropriate types are not necesearily static As low level simulation results e summanzaed into moJdels of
more abstract modutes for use in higher-level simulations, the modules and their cortesponding models may be apperded
to the set et appeapaate types.

13

Chapter 2 Approach

tain tasks, or operations. The operation actually invoked depends on the type of object being
asked to perform the operation, yet the object type is irrelevant to the Generic Simulator. The
same operation can mean different things depending on the type of the object. This technique is
known as data-directed crogramming [Abelson 85]. The following two sections present a more
detailed look at both internal and external simulators and what operations are required for each

kind of simulation tool.

2.3.2.1 Internal Simulation

Internal simulators have direct access to the objects in the Simulation Environment. Each
object involved in the simulation is delegated responsibility for delivering some local information
about itself or performing some computation using this information. To do this, specific simula-
tion operations are defined for each appropriate object type handled by the selected simulation
routine. For example, the NAND and NOR model types each have their own boolean operation for a

logic level simulation.

internal simulation becomes a layer of these simulation routines where each general algo-
rithm stands alore as an independent, modular upit. Common algorithms could then be shared
over different simulators. For example, relaxation-based simulators and asynchronous logic
simulators Loth exploit the inactivity of the circuit by using selcctive-trace and event-driven al-
gorithms. One routine could serve both simulators. Other generic algorittms are useful for other
parts of Schema. The matrix manipulation routines used ior the general-purpose circuit simulator

may also be useful in handling graphics.

A generic layer of operations on aobjects would ideally campicment this layer of simulation
routines. These operations are similarly shared over different simutation algorithing ag well as
other components of Schema. For instance, most types of wavelorms have a generic internal-
value operatiois which calculates and returns a value given a specific point in time. This is a very
common operation used nol cnly by circuit level simulators, but also by display routines and
analysis too's. One generic operation is defined for each wavefrrm type to satisfy the needs of all

potential callers.

19

Chapter 2 Approach

2.3.2.2 External Simulation

Prior to an External Simulation, each object in the Simulation Environment requiring simula-
tion must be transformed into the appropriate external representation, usually a textual descrip-
tion language understanidable by the simulator. The description is then sent to a separate ad-
dress space where the simulator builds its own internal data structures for the simulation. if the
simulator exists on a remote processor(s), the description is sent via the local network or file
system. Afier simulation execution, the output data must be interpreted and transformed into data

objects in the Simulation Environment.

Input transformations are instigated by the Generic Simulator, yet are actually performed by
the object iiself. As in the Internal Simulation case, the particular operator invoked will depend
upon the type of object being transformed. A transistor object requires 2 very different transfor-
mation operator than that of an exponential waveform. Furthermore, because there is exactly one
representation for the transistor object in the Simulation Environment and possibly many
simulators that use this type of object, there may be many transformation operators defined for it
-- potentially one for each external tool that simulates the transistor. A switch-level simulator for
example, requires a ditferent transistor representation than a circuit-level simulator and thus a
different transformation operator. In the case of output duta, the Generic Simulator must however
supply a parser to extract the output information and to create the data objects within the
Simulation Cnvironment. Transformation responsibility in this case lies with the Generic

Simulator.

For both types of simulators, each object has a certain set of operations that it must per-
form. The Generic Simulator need never know the implementation details of these operations,
and each object need not know about the interna! workings of the Goneric Simulator. The
‘ndividual cimulators, the Generic Sinnator, and each object in the Simulation Environment are
all perceived as black boxes. Their internal structure and operations are essentially hidden and
icolated from each other. Tne Generic Simulator can be designed indc pendent of the type of
objects itis simulating. Itis generic in the tiue sense of the word. Thus, for the Generic Simulator
to perform its task, coordinuting the flow of objocts within the Simulation Environment, it must

simply know what operation to perform and on which object to perform it.

[t

Chapter 2 Approach

2.3.3 Uniform Interface

The user and the analysis tools interact only with the data objects and the Generic
Simulator. Because of the black-box quality of the Generic Simulator, the user and the analysis

tools do not interact with the individual simulators.

The analysis tools built on top of the Simulation Environment have direct access to the
uniform data structures in the Simulation Environment, and thus can interact with the objects in
much the same way as an internal simulator. Thus the interface to the topology, model, and
waveform objects, as well as the Generic Simulator is simple; the analysis tools need only know
the operations defined for each. By just knowing the operations for accessing output waveform
objects and the operations for telling the Generic Simulator to halt the simulation process, an
analysis tool can interaciively monitor the execution of an internal simulation the immoment erratic

waveform behavior develops.

The user indirectly interacts with both the data representations and the Generic Simulator
through a graphical interface. The Generic Simulator interface amounts to a well-defined series
of textual, or menu-driven commands. The designer is thus spared the burden of learning the
operation of each individual simulator; instead, a working knowiedge of tne Generic Simulator is
sufficient. Schematics, layouts, and icons serve as a graphical presentations of the topology.
The correspondence between the graphical presentations and the topology is dealt with further in
Chapter 3. Moaodeals have a simple menu-driven interface. Wavetorms have display objects wiiich

nave the ability to represent theinselves graphically to the user; these are discussed in Chapter 5.

2.3.4 Accomplishing the Design Goals

A common representation for data is equivalent to defining a set of cbject types and a sct of
operations that can he performed on those types. These iypes provide ithe uniform interface
which enables us to achieve our dasign goals. Interfacing new CAD t:als 1equires onty local
additions to the environment. Integrating an acdiditional simulator reay roquire new object types
and a set of operations for each type of object th.x simulalor handles. A new objuct type is detined
for the Simulation Environiment only it the simul2tor actually simulates an object not yet defined in
the environmant, Adding an internal simulate: may also necessitate the modular addition of
general simulation algotithms along with some cbject operations. For an external simulator, a set

of transformation operators ard an output parser are necessary. Building new analysis tools

Chapter 2 Approach

requires only a working knowledge of the objecis in the envirorment, the operations that can be
performed on them, and the operations that are available for the Generic Simulator. Because
waveform objects are represented uniformly in the Simulation FEnvironment, output signals from
one simulation can be usad as input to anotier simulation; the mixed-mode property is a direct
result of the uniform data structures. With the different levels of simulation, a type transformation
operation may be necessary. This is explored further in Chaoter 5. In suramary, all design goals

can be accoimplished through tne local addition of new objects and operatrons on those objects.

2.4 Implementation in Schema

The Simulation Environment is implemented in Schema In this snction. a brief overview of
Schema's hierarchica! organization, constraint network, and creation on !emand techniques are
Jall described. In subsequent chapters, wo shall see how these strategies tie directly into the

Sunulation Environment.

2.4.1 Hierarchical Organization

Schem:t is organized hiararchicully as shown in Figure 2-2 where cach part in the hierarchy
may contain subparts. The root of the hierarchy is the Portivlio which has subparts called
Projects, and Cnvironment folders. Projects serve as an arganizaticnal mochanism for grouping
together other Projects and Module folders. Environment foldlcrs suppiy the designer with stan-
dard libraries. A Modute folder? contains the electronic circuit desige; it has lcon, layout,
setiematio, topology, and waveform foldzr parts. The user's graphical interface to the topology is
mainly through the scheraatie, lavout, and icon presentaitions. And finally, waveform folders hold
collections of waveform specifications, simulation stimuli. and sinwlation results. 1his partition-
irg allows the user (o concentrate on one given hierarchical level of desiyn at any particular time.
Hicraichical organization is an essential strateqgy in contioliing the complexity of large scale

designs.

Each object in the Simuiation Environment naturally fits into the hiararchical organization of

Schema. The ciicuit topclogy and simuliaiion wavetorms are parts of Module folders. Because a

2 . .
Module folders, and modutes are different entiie s for histarical reasons, ey were mcorrectly named Modules are
components of the topology, the topalogy is a componend of the module folder.

22

L. 7 edd

Chapter 2 Approach

model may be shared over many modules, models are collected into folders located directly in the
user's environment. In later chapters, we shall see how each of the objects also naturally con-

forms to this hierarchical representation.

Portfolio
p————————> Project(s)

f—————————> Project(s)
f————————> Modulae folder(s)

Tcun(s)

layout(s)

Schematic(s)

Tupoloagy

‘#vvlv

Waveform Folder(s)

——————————> wWaveform folder(s)

—> fovironment Folder(s)

———> Fnviignment Folder(s)

[——————————>> Mudel Folder(s)

Model(s)

F————————> Mcdule Folder(s)
p———————> Waveform folder(s)
‘> other library lacilities

Figure 2-2: Hierarchical organization of Schema.

2.4.2 Constraint Network

Objects may contain parameters. Relationships called constraints are held between these
parameters. A transistor has local width, length, and shape-factor parameters where the width is
constrained to be the length multiplied by the shape factor. All constraint relationships are
specified in a global constraint network. This permils constraints between the parameters of
different objects. Complex timing relationships between the parameters of many different

waveforms can be captured in the constraint network,

23

Y

Chapter 2 Approach

This technique is primarily useful for the automatic propagation of constraints through local
computation. Modifying one waveform’s parameter automatically propagates to those waveforms
constrained to it. In the event of far-reaching effects, constraint propagation saves the designer
from the tedious and time-consuming process of manual updates. Analysis, synthesis, and
reasoning tools can aiso make use of the constraint network in transistor sizing or circuit verifica-

tion, for example.

2.4.3 Creation on Demand

Creation on demand is the technique of creating an object's internal structure only when it
is needed. In the meantime, the external environment only knows the object exists; typically this
is done by knowing the name of the object. Creabion on demand applies equally ovar all objects in
the hierarchy. Once the internal data structure has been creaied, ils internal parts likewise need
not be created until required. For example, if the designer is interested in only in one specific
module folder in a large hierarchy cof projects and module folders, then it is only necessary to
create the parents of the desired module, beginning with the designer's Portfolio. This technique
has the advantage of saving valuable memory space and subsequent gaibage collection time - a

subsiantial savings when dealing with large-scile designs.

2.5 Sunmmary

The Simulaticn Environment provides a uniform CAD interface, a consistent user interface,
and mixed -mode capability by using a common representation for simulation data objects: circuit
topologies, models, and waveforms. The Generic Simulator coordinates the flow of these objects
between each simulator and the simulation initiator. The data objects, the Generic Simulator, and

the user interface together make up the Simulation Environment as implemented in Schema.

24

Chapter Three

Topology

The topology contains the interconnection information of a circuit design. The structure of
a topology deviates from the general hierarchical organization of Schema in that it does not
contain subparts. Instead, the topology has a module definition and a module type. The module
definition is usea for the simulation cf the current topology. The first half of the chapter con-
centrates on the module definition: its uniform representation, submodule interconnection, and
user interface. The module definition defines a new module type. The basic module types as well
as techniques for creating new module types and operations are examined in the remaining half

of the chapter.

3.1 Module Definition

3.1.1 Uniform Representation

The module definition contains submodules. pins, nodes, parameters, and models. The
submodules may also have submodules. In this way, modules fit naturally into the hierarchical
organizaticn of Schema, as shown in Figure 3-1. Together, the submodules, pins, and nodes
specify the clectrical connectivity information. Parameters name quantities which are tied to
Schema’s constraint network. Models are discussed in detail in Chapter 4. The topology, as all

objects in the Simulation Environment, has a uniform representation.

3.1.2 Module Interconnection

Modul: interconncection, an essential piece of electrical information, is accomplished with
pins, nodes, and global pins. A pin is a module's interface to the outside world. Transistor
modules for example contain four pins: gate, source, drain, and body. Modules are intercon-
nected by attaching theii pins to nodes. And finally, a global pin is a special pin seen by all
modules spanning the hierarchy. It may connect through a common node to any module pin.
Global pins are used mainly for supply voltages such as Vdd and Vss.

25

Chapter 3 Topology

Module Folder(s)

r———————> lcon(s)

->» layout(s)
l——————> Schematic(s)
<> Topology

> Module Definition

F——————> Module(s)
}——————> Pin(s)
—————> Node(s)

— ——-» Parameter(s)
“-—————> Model(s)

L—————> Module Type

L'———’> Waveform Folder(s)

Figure 3-1: The topology and its placement in the hierarchical organization of Schema.

Each mnodule pin knows (1) the nodes connected to internal modules, inodes, (2) the nodes
to which exterrnal modules connect, enodes, (3) its direction, and (4) its parent module. In Figure
3-2, the inverter mocule has four pins associated with it: A, A-bar, Vdd, and Vss - of which the
latter two are global pins. They all have nodes that connect to the pins of internal modules. Pin A
has an internal node n3, no nodes connected cxternally, the direction input, and a parent, the
inverter module. The gate pin of the enhancement mode eM0S module has no nodes internally
connected, but does have an external node n3, the direction, input, and the eMOS module as a

parent,

Each node knows all the pins attached to it and the internal pins for which it is the internal
node. Node n2 is attached to pin A-bar of the inverter module, the gate and drain pins of the
depletion mode dMOS maodule, and the drain pin of the eM0S module. Pin A-bar is the internal pin

for which n2 is the internal node.

26

Chapter 3 Topology
Vitd
| Inverter ' ! Inverter
| Module . | Schematic ____ %%
tcon
IDefinition I
Wire-1
| - -
l | Omos | wire & Dmos
| Module I l I teon
|
| - =
' ' wWirg-7 Wire-8
|':|_J A-bar r —{ > A-bar
| n2 Output
eon
l r_ —_— —_ I Wire-3
: , Ly
" Fmos hire: 9 nos
A [’L-F_’ Module | A m@__________{[5cun
Pin
Tcon
| Lo —
Wirg -4
l O node l
e . I VAL
Tcon
lm gtobad pin !
ss

Figure 3-2: Inverter module definition and corresponding schematic presentation.

27

Chapter 3 Topology

3.1.3 Module Definition Creation

Prior to initiating a simulation, a module definition must be available. If the definition does
not exist, it is initially created from the most recent graphical schematic or layout preseﬁtation. A
module definition may however already exist from some other simulation. In this case, if it is not
up to date with the latest version of the presentation, it is updated. This section describes the

process of creating or updating a module definition from the presentation.

The presentation is given responsibility for creating or updating the module definition. If the
definition is nonexistent, a dummy module object is created for the definition; it initially has no
submodules, pins, or nodes. Then for each part in the presentation, a topological correspondent
is created in the module definition, if none exists. Topological correspondents are submodules,

pins, or nodes in the module definition; the module definition is updated accordingly.

A schematic presentation for example, is composed of icons and wires that contain place-
ment and display information. Pin icons, module icons, and wires in the schematic have topologi-
cal correspondents of pins, modules, and nodes respectively, in the module definition. A
schematic for the inverter is shown in Figure 3-2. Wire-2,Wire-3, Wire-5, Wire-6, Wire-7,
and Wire-8 of the inverter schematic all have node n2 of the inverter definition as their topologi-
cal correspondent. The Input Pin Icon and eMOS Tcon have topolcygical correspondents of
Pin A, and the eMOS module, respectively. Associated with each icon is a set of display pins used
to connect wires. These display pins are not shown graphically, yet they do have topological
correspondents in the module definition. The eM0S - Tcon has three display pins, each of which

has a lopolcgical correspondent - the gate, source, and drain pins.

The muodule definition is created at the top level; the submodules and their interconnections
are created. The internal structure of each submodule is only created on demand. Once this
top-level module definition has been generated, it may be saved in a topoiogy save file for future
use. When the file is read in during a new Schema session, the module ¢!.2finition is not created,
but rather a new module type is defined. In this case, it is not necessary to create the definition

from the precentation; the definition can be simply created from the module type.

Chapter 3 Topology

3.1.4 Uniform User Interface

The module definition is visually transparent to the user. The user indirectly communicates
with the objects in the topology's module definition via the graphical schematic or layout presen-
tation. During the simulation process, the presentation is used as a read-only medium for extract-
ing or modifying electrical information in the module definition. Because each display object has
a topological correspdndent in the module definition, the user can easily access electrical infor-
mation. Similarly, each part in the module definition has a presentation correspondent. In this

way, the parts of the module definition may report back to the user.

The presentation is a flat structure, whereas the topology is hierarchical. The correspon-
dence between the module definition and the presentation is only for the top-ievel modules in the
hierarchical definition. This presents two problems when the user tries to examine the electrical
information in the lower level moclules. First of all, the only topological components accessible to
the user are those having a correspondent in the presentation. Any parts of submodules in the
module definition do not have presentations associated with them. Secondly, these parts may not
even exist. When the module definition is first created, only the top level objects and their

interconnections may exist.

These problems are solved with the zoom-in facility. Suppose an inverter icon is a part of
the user’'s current presentation, and the user wishes to set the length and width parameters of the
transistors inside the inverter module. Further suppose the inverter module is not fully created,
i.e., the transistors do not yet exist. The zoom-in facility finds the layout or schematic presen-
tation from the module folder of the inverter icon, and makes it visible to (he user as a read-only
reference for examining the submodules of the inverter module. In order to examine the tran-
sistor submodules of the inverter, the inverter must first create its submodules. During the crea-
tion process, a correspondence is set up between the inverter's presentation and the module
instance in the same manner as before. The advantage to this strategy is a single schematic or

layout presentation is useful for all mocules of the same type - not just the incdule definition.

Chapter 3 Topology

3.2 Defining New Module Types

A new module type is defined from the module definition, or from a textual description
stored in the topology’s save file. The type is used to create a separate copy of the module
definition for use as a part in some other module. When the type is created, operations are
automatically defined to enable an object of the new module type to create its own parameters,
constraints, submodules, pins, and internal interconnections. Three basic module types are avail-

able: simple, compound, and abstract.

3.2.1 Simple Modules

Simple Module Types do not contain submodules. They may, however, have pins,
parameters. and constraint relationships, which are generated as soon as an object of this type is
created. Examples of simple modules include the resistor, capacitor, dMOS and eMOS tran-
sistors, and inverter, NAND, NOR, XOR, OR, and AND logic gates. These types are mainly defined in
the designer's environment. Another distinguishing feature of simple modules is they typically
have no schematic, only an icon. The following examples depict simple module type detinition for
the res istor and eMOS transistor.

(defmodule resistor simple
(resistance) ;parameter definition
(pins p+ p-)) ipin definitions

(defmodule ¢MOS simple
(width length shape ;parameter definitions
source- area source-perimeter
drain-area drain-perimeter)
(pins gate tl1 t2 body)
(c* (>> width) ;constraint between parameters

(>> shape)
(> length)))

3.2.2 Compound Modules

Compourid Module Types have submodules; and thus, can be hierarchically structured. As
with simple modules, pins, paramcters, and constraints are all generated when an object of this
type is first created. Pin creation is particularly important at this point; external modules can then
connect to this module without knowing the internal structure of the module. The submodules

and their internal interconnections are created only upon demand. The typc associated with each

i

Chapter 3 Topology

user-delined topology is usually a compound module type. An example of an inverter module

type follows:

(defmodule inverter general
()
(global-pins Vdd Vss)
(pin a input)
(pin a-bar output)

(module pulidown ¢MOS) ;submodule definitions
(module pullup dMOS)
{connect (>> t2 pullup) ;internal connections
{(>> vdd))
(connect (>> t1 pulldown)
(>> Vss))
(connect (>> gate pulldown)
(>> a-bar))

(connect (>> t1 pullup)
(>> gate pullup)
(>» t2 pulldown)
(>> a-bar))

3.2.3 Abstract Modules

Abstract Module Types are generalizations of a class of module types with similar charac-
teristics. For example, there are many module types that have two pins, such as the resistor,

capacitor, and inverter. The abstract module type, Two-Pin-Dev icu, captures this notion.

{(defmodule two-pin-device abstract
() ino parameters
(pins p+ p-)) ;pin definition

The resistor can now inherit this abstract type, and thus implicitly includes twa pins.
This is known as type inheritance. The previously-defined simple moduie type, resistor, is

redefined as follows.

(defmodule resistor simple
{resistance)
{includes two-pin-device)) ;inherits two pins

Another abstract module, MOS, captures the general charactenstics ot MOS transistors
including width, length, and shape parameters. Additionally, a constraint is placed between these

parameters.

a1

i v v 3
Chapter 3 Topology
(defmodule MOS abstract

(width length shape

source-area source-perimeter

drain-area drain-perimeter)

(pins gate tl1 t2 body)

(c* (>> width)
(>> shape)
(>> length)))

This abstract module is then used to define specific types of transistors, such as eM0OS and
dMOS, with these implicit parameters and constraints. Type inheritance greatly simplifies the type
definition.

(defmodule eMOS simple

)
(includes M0S)) ;inherits MOS characteristics
3.3 Defining New Mo . ule Operations

A layer of general, all-purpose accessors and operations is currently defined for topolcgical
objects. This layer is independent of any particular simulator and thus is useful not nnly to the
Generic Simulator, but to any tool requiring access to topological inferraation. One very basic
operation gives modules the ability to create their own submodules if ‘hey have not yet been
created. Another operation permits a module definition to dump its data structure in such a way
that a module type is defined when the dump forms arc evaluated. Other locdahzed operations
may be easily incorporated.

Because a general layer of operations on topologicnl objects currently exists, integrating
additional internal simulators does not require the addition of a new operators. For an external
simulator, rowever, a transformation operation must be defined 1o translate the data objects in
the environment into a textual description for the simulator. For each mcdule type ihe simulator
accepts, a new transformation operation is defined. Simnle transformaticn operations for creat-
ing a Spice? input deck are shown below.

32
L. S -~ a - _

Chapter 3 Topology

(defmethod (resistor :spice-deck) (stream)
(format stream "R~D ~D ~D ~F~%"
(simulation-resistor-number self)
(simulation-node-number (>> p+))
(simulation-node-number (>> p-}))
(>> resistance)))

(defmethod (MOS :spice-deck) (stream)

(format stream "M~D -D ~D ~D ~D ~A W=~D L=~D-~%"
(simutation-MOS-number self)
(simulation-ncde-number (>> t2))
(simulation-node-numbher (>> gate))
(simulation-node-number (>> t1))
(simulation-node-number (>> body))

(send (send self :get-model) :name)
(>> width)
(>> length))

Notice a single op 2ration is; defined for a whole class of MOS devices. In other words, this
operation is performed on all modules that have the abstract MOS type; this includes eM0S module
type redefined above. Thus, not only is the type inherited, but the operations defined on the type

are also inherited.

3.4 Summary

A topology contains a module Jefinition and a type. The module definition is the topologi-
cal object used in simulation. it is uniformly represented within the hiersrchical organization of
Schema. [t is initially created from a presentation and serves to define t:e module type. In this
way, new tvpes and their operators can be easily integrated into the Simul:ation Environment. The
simple addition of new types and their operators facilitates extensibility to both internal and

external simulators.

Chapter Four

Models

Because simulators mode/ the behavior of real devices, models play a vital role in the
simulation of circuit designs. In the Simulation Environment, a model may be associated with
each module being simulated. Models contain many of the clectrical quantities required in
simulation. The unifcrm representation, the user interface, and the basic types of models are all

discussed in this chapter.

4.1 Uniform Representation

Models are not hierarchical; they do not contain other models. Instead, models have
parameters such as threshold voltages and oxide thicknesses for circuit level transistor models,
and setup times. propagation delays and hold times for logic-level models These parameters are
not the associated with the constraint network. In the hierarchical organization of Schema,
models applicable to a particular type of module are collected into a mode/ folder. Similarly,
model folders for different modules are grouped into environment folders as shown in Figure 4-1.
At any one level in the environment folder hierarchy, there is at most on:: model folder for each

moaule type.

It is interesting to note that mcdel folders and their respective models are kept separate
from the module folder for which apply. Rather models and model folders are classified by
environment, and the intormation contained in the module folder is shared over all the environ-
ments. In this way, environments can be conligured by a particular fabrication process, for
exampie. By simply switching environments, a new set of models corresponding to a different
fabrication process can be used. The major advantage to this approach is that circuits can be

designed independent of the fabrication process, or indeed, any other technological division.

Chapter 4 Models

Environmunt Folder(s)

j———-—> Fnvironmeat Folder(s)
—————> MHodel Folder(s)

l——> Model(s)

5 other library facilities

Figure 4-1: Models and their placement in the hierarchical organization of Schema.

4.2 Uniform User Interface

The user interface to creating new model folders and models is simply menu-driven and
self-explanatory. If the model fokler for the moduie to be modeled does not exist, a new module
folder is first created. A new model is generated by selecting any one of the currently defined
model types for the chosen module type. Furthermore, the user is free to modify any of the

parameters of the newiy-created model.

4.3 Defining New Model Types

In the Simulation Environment, each newly-defined model type must specify both a module
type for which it is applicable and a list of parameters. A default value, a short documentation

string, and a dimension accompany each parameter definition.

While a model type corresponds to exactly one module type, each module type may cor-
respond to several different models. The MOS transistor is a prime example of a module having
many model types: switch, linear, shichman and hodges, analytical, and semi-empirical models.
Each model type may produce several individual model objects. There may, for example, be

special models for worst-case speed, worst-case power, and woarst-case noise margin.

Two basic types of models exist: models without state and models with state. Models

35

Cean S nm

Chapter 4 Models

without state may be shared by modules of a common type, but models with state may not be
shared. Modules may require the use of both kinds of models; some parameters may be shared
over many devices of the same type, whereas other parameters refer to the local state of the
device®. The following two sections describe each model type and explain how to define new

model types.

4.3.1 Models Without State

Modules of the same type share a common model without state. The obvious advantage to
this apprcach is a savings in memory space because only one copy of the model is generated.
This does not imply that a/l devices of a common type must share the same model. This
mechanism just facilitates a sharing of a common model. Some modules of a common type may
require one shared model without state, while others of the same type may require a different

model withnut state.

Models without state are useful to both external simulators and internal simulators. In a
logic level simulation, all NAND gates in the circuit may share common values for transition times
along with a common boolean operation. In this case, a single shared mode! without state is
useful to all modules of type NAND, regardless of whether the logic level simulator is an external or

internal simulator.

For the abstract module type MOS defined in Chapter 3, a abstract Spice2 model is defined
as follows:

(define-model MOS spice-MOS ()
(vtO 0.0 "Zero hias threshold voltage” :voltage)
(kp 2.0e-5 "Transconductance" :current per-voltage-squared)
(gamma 0.0 "Bulk threshold parameler” :sqrt-voltage)
(phi 0.6 "Surface potential"™ :voltage)

The new model type is called spice-MOS and its parameters ar2 those that are used over
all three MNS device moaodels defined in Spice2. A spice -M0S-analytical model type can now
be defined with the additional parameters required for simulating an analytical model. Since this

new model includes the sp ice-M0S model, all of its parameters will also be included.

3This case has not yet been dealt with exolicitly. Either the two separate models could both be cached in the module,
or another type could be defined haviing local state along with a pointer to the shared model.

36

Chapter 4 Models

(define-mode) MOS spice-MOS-analytical (spice-MOS)
(1ambda 0.0 "Channel length modulation” :inverse-voltage)
(ucrit 1.0e4 "Crit field mobility degrad” :voltage-per-length)
2)

And finally, this abstract model is used to define a general model for the eMOS module. The
model restricts the channel type to n-channel, while also including all the abstract charac-
teristics of the spice-M0S-analytical and spice-MOS model types.

(define-model eMOS spice-eMOS-analytical (spice-MOS-analytical)
(channel-type "Channel-type" :value nMQOS))

4.3.2 Mode!s With State

As the name implies, a model with state stores information relating to the current state of
the module, such as charge, binary state, and local variable bindings. Internal simulators use
models with state 10 temporarily store simulation data. The Q parameter of the
logic-D-flip-flop model and the state parameter of the Rsim-MOS model are recalculated
for each event or cloch cycle of the simulator.

(define-model-with-state D-flip-flop logic-D-flip-flop

(Q "Current state" :values '(L H X)))
(define-model-with-state MOS Rsim-MOS ()
(state "Current state” :values °'(on off unknown weak))
{(rstatic-min "Minimum static resistance” :resistance)
(rdynlow "Dynamic low resistance” :resistance)
-)

An imple:nentation of Rsim also requires an initial determination of the effective static and
dynamic resistances of each MOS device. These parameters are calculated one time only from
the local parameters of each module and are reused over many siraulations. To sum up, the
parameters of a model with state may depend on the model's local state and the module's local

properties.

4.4 Deiining New Medel Operations

Defining operations for models is a very powerful tool for prothoting modularity in internal
simulation design as well as in integrating additional external simulators. For internal analysis

tools, models perform certain operations such a drain current calculations, boolean functions,

37

Chapter 4 Models

and behavioral-level procedures. For external simulators, transformation operations can be

defined similar to those defined on modules.

4.5 Summary

Models have pafameters which hold the electrical information required during simulation.
Models are located in the designer's environment and are cached in the module prior to simula-
tion. The cached model is then available for future simulations. Two basic types of models exist
in the Simulation Environment: models with and without state. New models and operations can be

buiit out of these basic types.

W—'—* -y T R
Chapter Five
Waveforms
Waveforms embody any type of excitation or response signal used in the simulation and
analysis of 2lectronic circuits. In the Simulation Environment, the uniform waveform represen-
tations are patterned after the input and output signals of simulators. This chapter briefly ex-
amines these uniform representations and how they fit into the overall hierarchical framework of
Schema. Then an introduction to the uniform user interface leads naturally into a discussion of
the display types, their associated waveform types and operations, and the usefulness of the
constraint mechanism. And finally, type conversions are discussed with respect to the mixed-
mode property of the Sirnulation Environment.
Portfolio
F——>> Projecct(s)
> Precject(s)
> Module Folder(s)
l——-—) Wavelform Folder(s)
‘—:—:) ¥Waveform Folder(s)
> Waveform Display(s)
L—) Waveform(s)
l—) Waveform(s)
L—— > Waveform Folder(s)
'——>> favironment Folder(s)
l:—; Waveform Foldsr(s)
other library lacilities
Figure 5-1: Waveforms in the hierarchical organization of Schema.
39
- ;- S v 3 o

Chapter 5 Waveforms

5.1 Uniform Representation

Waveforms are the uniform mechanism for communication among modules in the
Simulation Environment. The means of organizing and grouping waveforms, waveform folders,
the means of displaying waveforms, waveform displays, and the actual waveforms objects them-
selves, provide the mechanisim for fitting wavetorms into the hierarchical organization of Schema
as shown in Figure 5->l. This section gives a brief overview of each, along with its dedicated
purpose in the Simulation Environment. This background, in combination with a discussion on
the applicability of the constraint network in the waveform domain, lay; the foundation for the

implementation details presented in the remaining sections.

In the hierarchy of Schema, waveform fulders are parts of projects, module folders, and
environment folders. As a project part, a waveform folder serves as a medium for capturing many
of the simulation stimuli, e.g., clocks, control signals, and wavetorm specifications that are shared
between the simulations of different modules. As a module-folder part, a waveform folder con-
tains waveform information pertaining just to the module. Waveform folders that are project and
module parts are generic und thus may be shared by many different enviranments. And finally, as
an environment folder part, a waveform folder holds simulation results. In the same way that
models are associated with a particular environment, so are the waveforms resulting from simula-
tions that use those models. Allowing waveform folders at many levels in the hierarchy permits a

large degres of modularity in arganizing the wavelorms of very large circuit designs.

Waveform foiders contain other waveform folders as well as waveform displays as parts. As
the name implies, a waveform dispiay object holds the information required for a visval display to
the user. A display object, for example, could contain information regarding maximum and min-
irmum axis amplitudes, horizontal and vertical scaling, and dimens.onal units. This information is

conveniently useful to display routines defined for the objects.

One level deeper in the hicrarchy, wavclorm displays hold a orderc.! set of waveform parts.
These parts represent the actual signal values. In keeping with t-e hierarchical structure of parts,
waveforms may also have wavetorm parts. Waveforms are ordered in increasing value along the

x-axis to guarantee fast searching through parts.

Constraints may be placed among parameters internal to a waveform, between the

waveform parts of 4 common display object, or across wavcform parts of different display objects.

Chapter 5 Waveforms

A ramp has parameters of initial-x, final-x, and delta-x. In this case, de1ta-x is numeri-
cally constrained to be equal to the difference between the final-x and the initial-x

parameters. This is an exampte of a constraint placed on parameters internal to a waveform.

Another constraint may be tied between parameters of waveform parts in a common display
object. In a sequence of ramps, the initial-x parameter of each ramp part of a display object
is constrained to be equal to the final-x of waveform part preceding it. This constraint, in
conjunction with the atorementioned internal constraint imposed upon each individual ramp,
makes it possible to achieve simple shifting operations along the x-axis. Changing one parameter
locally propagates the constraints to shift all waveform parts of the display object to the right or

left along the x-axis.

Finally, constraints may be placed across waveforms parameters in different display ob-
jects. This is especially valuable when specifying complicated timing relationships between input
signals. Consider a typical dynamic random-access memory chip where read, early-write, write,
read-write/read-modify-write, page-mode read, page-mode write, and Ras-bar-only refresh cycle
timing relationships each occupy a full page in the standard MOS memory data book. Local
constraint propagation to achieve global consistency over the numercus compiicated timing
relationships associated with very large performance circuits is a very valuable asset to the circuit

designer of taoday.

5.2 Uniform User Interface

Waveform displays provide a powerful user interface io all waveform objects of the
Simulation £nvironment. They contain the cssential data and operations for graphicail entry and
screen display. The types of display objects defined in the Simulation Environment are geared
toward the visual representation universally sketched by today's circuit designers and typically
observed on standard test equipment such as the oscilloscop2 or logic analyzer. Rather than
inexact sketching with paper and pencil, complex adjustments of knobs and buttons, and reams
of computer simulation printouts, a simple uniform menu-driven, bucky-key interface t¢ each
display type is furnished. The user may then graphically enter input waveforms, and view simula-

tion results via a common wavetorin display interface.

M

Chapter 5 Waveforms

5.3 Display Types and Waveform Types

Display types are selected on the basis of input and output waveform needs for the different
simulators. The following sections present a few of the possible types of waveform displays. For
each display type, a set of basic waveform types is also defined. Waveform objects are created
from these basic types and subsequently become parts of the display objects. Other waveforms
can be added to this basic set as long as they supply the necessary graphicai entry and screen
display routines. Alternatively, additional compound waveform types can be generated from this
basic set. This generation of new waveform types is performed in much the same way as the

topology’s type is automatically generated from the module definition as described in Chapter 3.

5.3.1 Analog Waveforms

Graphically, analog display objects are two-dimensional. Horizontal and vertical axes con-
stitute any continuous dimensions, such as voltage, current, time, frequency, power, and

capacitance. Maximum and minimum axis amplitudes are alco display attributes.

Al wavetorm parts of analog display objects are inplicitly given paramelers of initial -X,
final-x and delta-x, where delta-x is numerically constrained to be equal to the difference
between the final-x and the initial-x paraincters. The user has explicit control over setting

and constraining these values.

Two basic types of waveforms are parts of analng display objects: functions and analog
arrays ol (x,y) pairs. Functional types are convenient in three importani ways: first as input to
crreuit level simulators, secondly as a simple graphical entry form for tho user, and finaily as a
compact desciiption of the waveform. Levels, ramps, sinusoids, and exponentials represent the
common se. of functional types currently available in the Simulation Environment. In general any
function, y - f(x), can be included. All functional constants, such the fraquency and amplitude of
a smusoid or the Yrae congslant of an exponential, are parameters and thus may be constrained. A
level waveforim type is detined as foilows:

(defwaveform level simple

(y))

In addition to the implicit parameters and constraint, an explicit parameter, y, has also been
defined. In the following type definition, the ramp imposes an explicit constraint between the y

parameters; this is similar tc the implicit constraint imposed in the x-direction.

42

Chapter 5 Waveforms

(defwaveform ramp simple
(initial-y final-y delta-y)
(c+ (>> final-y)

(>> initial-y)
(>> delta-y)))

Because simulation output of circuit level simulators is typically long listings of (time, value)
pairs, an array waveform type is the most efficient data structure for memory storage. A sum-
marized graphical-formis created to allow for fast visual display.

(defwaveform analog-array simple
{pts graphical-form accuracy))

Frequentlvy the output points resulting from a detailed simulation run are extraneous.
Furthermore, the designer is often only interested in a transition time or time constant of some
selected portion of the waveform. At the expense of some accuracy, many of the points are
discarded and teplaced with a summarized version. In essence, this summarization process can
be viewed as a conversion between the waveform array type and the functional waveform type. At
first, the array waveform could be naively viewed as a series of ramps. At this point, the major
difference between the two types is the inherent constraint mechanism associated with the ramps
parameters. One-to-one mapping tor the conversion of the detailed array to the ramp type would
be absurd. A more realistic approach applies a combination of heuristic techniques, rigorous
curve-fitting algorithms, and desired accuracy level to produce a summarized series of piecewise-
linear segments, or a combination of piecewise linear and exponential segments, as is more
typical of waveforms resulting from a digital circuit. Detailed simulation results are then discarded
for the more summarized version The currently defined conveision ope:ations are presented in

[Solden 86].

In addition to conversion and summarization operations on functional and array waveform
types, many mathematical operations are defined {Solden 86). Standard tnary operations useful
in analysis are interpolation, differentiation, and integration. Others standard operations involving
more than one waveform operand include addition, subtraction, multiplication, and division.
Operations such as these are extremely powerful for calculating power lossage, effective resis-
tance and capacitance. Moreover, defining additional waveform operations is simple. It requires
onlv a locai understanding of the waveform dala structures described above, in addition to

knowledge of the basic operations already defined.

P—-—-——————__—*

Chapter 5 Waveforms

5.3.2 Binary Waveforms

A binary display type is built on top of the analog display type with a restriction placed on
the maximum (7) and minimum (0) amplitude of the y-axis. The x-dimension is either continuous

(variable-delay) or discrete (unit-delay) time.

Three basic types of waveforms can be parts of binary display objects: steady-state,
\ transition, and binary array. These types were selected on the basis of their usefulness as input

and output to linear model, switch, and logic level simulators.

Steady-state and transition waveforms implicitly inherit the same parameters and constraint
in the x-direction described for the analog case. In addition, steady-state wavelorms have a state
parameter, and transitions have initial-state and final-state parameters. States may
have values of logic zero (9), logic one (1), a high-impedance (Z), and an unknown (X).

(defwaveform steady-state simple
(state))

(defwaveform transition simple
(initial-state final-state))

Steady-state and transition waveforms are similar to the level and ramp defined for analog
displays, yet with the restriction on values of state. In the case of the transition however, a
constraint was not placed between the initial-state and final-state as was done be-
tween lthe start-y, end-y, and delta-y for the ramp because delta-y would always be either

lor-1.

As in the analog case, binary arrays are a condensed form of output storage. Points are
restricted to be (x,state) pairs.

(defwaveform binary-array simple
(pts))

Conversion between steady-state / transition waveforms and kinary array waveforms is a
straightforward mapping. Boolean operations, bit-pattern searching, and other virtual logic-

analyzer operations can be easily incorporated.

Chapter 5 Waveforms

5.3.3 Defining New Displays and New Waveform Types

Analog and binary display types are designed to cover most all the cases for the lower level
simulators. This listing is by no means exhaustive. For this reason, adding new waveform types
tor these display types is a simple procedure. Infinite as well as periodic waveform definitions
could also be added. From the basic set of simple waveform types defined above, a library of
compound, hierarchlcél waveform types can be defined. New wavetorm displays may also be
created. A qualitative [Williams 84] display for example could be built on top of the analog display
type, incorporating the display procedures currently available in the S.mulation Environment.

Non-linear and multi-dimensional display axes and g:aphics routines could be integrated.

At higher levels of signal abstraction, waveform axes are no longcr of any use. Waveform
displays amcount to program descriptions, flow graphs, state diagrams. and the like. Instead of
viewing individual binary signals for example, a collection of signais numerically represented in
base 8 or 76 would provide the greatest amount of flexibility. Octal and hexadecimal waveform
types would most likely exist where collections of up to 8 and 16 binary display objects, respec-

tively, could be directly mapped.

5.4 Mixed-Mode Capability

In order to perform mixed-mode simulation, where the output results of one simulation are
used as the input in some other simulation, a waveform conversion may be necessary. Simple
handlers transform waveforms from one type to another on demand. {onversion techniques
among waveforms occupying analog display objects and binary display otjects have been briefly
discussed. Conversion between analog and binary waveforms is of greater interest for the provid-
ing the mixed-mode capability of the Simulation Environment. In general, conversions from the
more accurate waveforms to a higher level of abstraction is straightforward. Mapping a voltage
waveforin onto a binary waveform requires an understanding of the threchold voitages and cur-
rents for the different logic states in the chosen technology . In the opposite direction, tcchniques
are available and are documented in the literature [Arnout 78, Antognetti 83]. All coercions could
be easily implemented and integrated with hitle knowledge of the internal workings of the sur-

rounding Simulation Environment.

Chapter 5 Waveforms

5.5 Summary

The uniform representations of waveforms, waveform displays, and waveform folders
naturally contorm to the hierarchy of Schema. Waveform displays provide a uniform interface to
the user. Display types and their associated waveform types are designed to satisfy the input and
output requirements of simulators. Parameters associated with input waveform tie directly into
the constraint network of Schema; output wavelorm types conserve on memory storage space.
New waveform types and operations as well as display types can be easily integrated. Local
coercion routines can be defined to simply transform one type of wavefo:m to another; this gives

the Simulation Environment the capability to perform mixed-mode simulation.

Chapter Six

Generic Simulator

This chapter explores the Generic Simuidtion Process: a series of steps leading to a single
simulation with the Generic Simulator. As the process unfolds. the discussion centers on how the
Generic Simulator coordinates the flow of data objects between the simulation initiator, the user

or analysis tool, and the selected simulator.

6.1 Uniform User Interface

During the Presentation Editing Mode, the user graphically draws a schematic or layout of a
circuit desigr. Then the user enters Simulation Mode. The display is reconfigured to provide
both a waveform editor and a read-only presentation viewer. The Generic Simulator requests the
presentation to create or update the module delinition. During this time, a correspondence is set
up between the presentaticn and the module definition. The read-orly nresentation viewer can
then serve as the user's interface to the electrical information in the module definition. At this
point, only the top-level submodules of the module definition and their interconnections cor-
respond to the flat presentation. The user may at any time access ihe internal parts of a sub-
module via the zoom-in feature described in Chapter 3. Using the wavel.~rm editor, the user may
graphically enter new waveform displays as well as view the waveform displays of any currently
existing waveform folders. For example, the user may wish to use a waveform folder containing
input test v=ctors and output specification waveforms for an add or memory-write operation. The
combination of both the presentaticn viewer and waveform editor enables the user to assign
waveforms 1o the input nodes and pins of the module defirition. After input waveform assign-

ments, the user may begin the Generic Simulation Process.

47

Chapter 6 Generic Simulator

6.2 Initiation Phase

To begin a Generic Simulation Process, the initiator first selects a region or all of a module
detinition upon which to perform the simulation. Next a specific simulator is chosen from the
available simulators within the Generic Simulator. Simulator selection specifies the set of ap-

propriate modute, model, and waveform types handled by the simulator.

Because some simulators perform more than one type of analysis, an analysis context must
also be specified by the initiator. Traditional circuit simulators for example perform dc, ac small-
signal, and transient analyses. If more than one analysis type exists for any chosen simulation,
analysis context selection may further restrict the appropriate module, model, and waveform
types. For example, a dc analysis context greatly simplifies a capacitor or inductor model. Under
different analysis contexts, a different kind of signal may be necessary; a dc analysis produces

voltage and current values, whereas a transient analysis generates 2 history of (time, value) pairs.

The Generic Simulator may request additional information from the initiator. In the case of
a transient analysis for example, initial time, time step size, final time, and number of simulation
steps are required information. For an internal simulation, the initiator has the opportunity to
control simulation execution, e.g., to halt when certain waveforms fail lo meet gutput specifica-

tions, or to supervise some combination of output waveforms such as effective capacitance.

6.3 Initialization Phase

Once a simu'ation has been initiated, the Generic Simulator initializes as much information
for the simulation as possible. This includes locating the appropriate modules, waveforms,
models, and the relationship between them. The Generic Simulator passes type-dependent tasks
onto each object. All initialization is completely transparent to the initiator. The following sec-
tions describe the Generic Simulator's role in the preparation the unilorm data objects in the
Simulation Fnvironment for simulation execution. This constitutes the ltiaiization Phase of the

Generic Simulation Process.

Chapter 6 Generic Simulator

6.3.1 Locating Appropriate Modules

The Generic Simulator locates the appropriate modules for the selected simulator by re-
questing this information from the module definition. The module definition asks all of its sub-
modules in the selected region to return the modules to be simulated. If a submodule is an
appropriate module type, it just returns itself to the Generic Simulator. If the submodule is not
appropriate and is a compound module type, it creates its submodules and their interconnections
- it not already created from some other simulation - and forwards the request onto its sub-
modules. If a simple module type is encountered which is not appropriate, an error is signaled;
the initiator is then notified that the selected simulatar is unable to sirmulate this particular module
type. The recursive process continues until all appropriate modules in the selected region are
located. In this way, the responsibility for finding the appropriate modules is passed from the

Generic Simulator, to the module definition, and onto each submaodule.

As an aside, notice that the entire submodule hierarchy need not be fully generated.
Subtodule creation is required only down to the appropriate modules in the selected region.
This results in consideratle time and memory savings - especially when simulating very large
circuits at higher levels of abstraction. Even though the circuit may be hierarchically defined
down to the detailed transistor level, the existence of the lower level objects is unnecessary for
the simulation at hand. For example, consider performing a register transter level simulation of a
microprocessor chip. wherae a programmable logic array vLA is one major component. The
module definition of the PLA may have been separately defined and testnd at the detailed tran-
sistor level, where simulation results were summarized into a more abstract logic level model. For
a logic level simulation of the microprocessor chip, valuable memory space is conserved by not
creating the internal transistor structure of the PLA submodule. Creation on demand inhibits

submodule generation unless absclutely necessary.

6.3.2 Interconncction of Appropriate Modules

Once the appropriate modules have been located, the Generic Simulator determines the
interconnections for the selected simulator. Because modules in the Gimulation Environment are
hierarchical, the pins of approvriate modules are indirectly connected to other appropriate
modules via the ncdes and pins along the hierarchy. Unfortunately most simutators do not handle
hierarchically interconnected modules. To solve this problen:, the pins of appropriate modules

are dircctly interconnected through a common simulation node. Conversely, each pin of an

49

a

Chapter 6 Generic Simulator

appropriate module connects to a simulation node. In this way, the Generic Simulator, and thus

the selected simulator, may view the circuit as a flat structure of interconnected modules.

6.3.3 Locating Appropriate Waveforms

Input waveforms assigned by the initiator must be of the appropriate signal type for the
simulator, and it not, must be transformed into the correct signal type. The Generic Simulator
asks each top-level input node or pin of the hierarchical modules in the selected region to return a
waveform of the appropriate type fcr the simulator. Each node ar pin forwards the operation onto
the attached waveform. If the waveform is not of the correct type, the wavetorm calls a transfor-
mation operation on itself, which returns an appropriate waveform to the Generic Simulator. If the
waveform undergoes a type conversion, the transformed waveform is cached on the node or pin
from whence in came; now both the original waveform and its transformed counterpart are avail-
able on the hierarchical module detinition. This avoids unnecessarily repeating the transfor-

mation procedure in future simulations.

6.3.4 Attaching Appropriate Waveforms

6.3.4.1 Input Waveforms

The initiator attaches input waveforms to nodes and pins of the hierarchical module detini-
tion. Yet the Generic Simulator associates appropriate waveforms with the fiat structure of inter-
connected moduies. When an appropriate waveform is returned from « hierarchicai node of the
module definition the Generic Simulator attaches it to a corresponding simulation node. Voltage,
binary, symbolic and other abstract waveforms are associated with simulation nodes. Some
simulators however also associate waveforms with pins. Circuit level simulators for example
commonly employ current waveforms. In this case the Generic Simulator creates a new set of
simulation pins corresponding to the pins in the selected region of the modute definition that were
assigned input wavetorms. These new simulation pins are different from the pins in the hierar-
chical module definition because they are directly connected to the flat simulation nodes. The

Generic Simulator then attaches appropriate waveforms to these simulation pins.

Chapter 6 Generic Simulator

6.3.4.2 Output Wavetorms

Output waveforms are placed on the simulation nodes. If output waveforms are also as-
sociated with pins, a set of output simulation pins are created for each module to be simulated.
As with input pins, output pins are connected directed to the flat simulation nodes. If an internal
simulator has been invoked, the output waveform displays are generated and attached to their
respective nodes and pins during the initialization phase for pending availability to other Generic
Simulation Processes. They act as virtual waveforms and can be assigned as input in other
internal simulations, /.e., for concurrent mixed-mode simulation. For external simutators, it is not
necessary to create the waveforms until simulation execution is complete. In the event of exten-
sive or lengthy external simulation, creating the waveform displays ahead of time only adds long-

term objects to local memory, and ncedlessly increases memory paging.

The flat structure now contains the modules, their interconrections, and the input
waveforms required for the simulator. The appropriate modules and the input waveforms are the
exact same objects contained in the hierarchical module definition, yet the simulation nodes,
simulation pins and the output waveforms are newly created for each simulation performed.
Furthermore, simulation nodes and pins and their associated wavetorm data are stored
independently from the hierarchical module definition; no explicit pointers exist from the moclule
definition (o the objects in the flat structure. In this way, each simulation run is kept separate and
distinguishable from other simulations, and thus can be quickly and easily discarded, saved for
later use, ur compared against the results of other simulations. Because waveform output often
contains many data points, it is important to sumimarize the essential waveform data and to

discard or garbage collect the rest.

6.3.4.3 Mapping Waveforms onto Nodes

A mapping table is creatad relating the fiat simulation nodes and the electrically equivalent
nodes in the hierarchical circuit module. Interconnected nodes along the hierarchy correspond
to one simulation node, and one simulation node maps onto one or me:e electrically equivalent
nodcs of the hierarchical module definition, as shown in Figure 6-1. This mapping allows the user
and the analysis tools access to the waveform data from the hierarchical module detfinition, and
vice versa. The user, for example, may probe a wire of the graphical presentatien for a waveform.
The wire forwards the message onto its topological correspondent, a node in the module defini-
tion. The mapping table is consuited for the equivalent simulation node. Once found, the simula.

tion node then returns the waveform. In the reverse direction, waveforms can now tind wires of

51

Chapter 6 Generic Simulator

the presentation for which they are associated. Suppose the user is viewing a waveform and
wishes to know the wires in the presentation for which a particular waveform applies. The
waveform forwards the operaticn onto its simulation node. Next the mapping table is consulted
for the set of electrically equivalent nodes in the hierarchical module definition. With the
knowledge of the user’s current prescntation, a single node is selected. And finally this node
requests each of its presentation correspondents, graphical wires, to display themselves to the

user.

hlerarchical
module jm—— e m e — - — ¥
definition | f— e — — — — 3 |
[—1 } O- G appropriate | |
—(O— - - ~ - |
_r— module l [
| 1
‘i\ ¢ { /1 ———————]
N N | U 1
| /s
7
AN I s
N ’
~ v
Ave
O simulation
node
A
i
|
Y
waveform

Figure 6-1: Mapping of a single simulation node unto electically
equivalent nodes of a hierarchical module definition.

6.3.4.4 Mapping Waveforms onto FPins

If waveforms are associated with pins, @ mapping table for pins is also uselul, in this case. a
o1e-to-one mapping. An mput pin of the hierarchical module definition maps directly onto one
simulation pin. Output wavelorms attached to simulation pins can map onto the pins of the
aspropriate modules. In contrast to nodes, pins along the hierarchy and their associated currents
are not electricaily equivalent; pins of hierarchical modules will not have a waveform initially - nor

an entry in the mapping table - unless the pin is queried for one.

52

Chapter 6 Generic Simulator

Suppose the initiator probes for an output current waveform of a module's pin. The pin
then consults the mapping table for its corresponding simulation pin containing the waveform. 1f
the module is an appropriate module, an output current waveform is returned. If not, a current
waveform must be created for the pin, as shown in Figure 6-2, where a simple application of
Kirchoff's current law produces the desired waveform. The current waveform of the hierarchical
module's pin is actually the sum of the currents attached to the pins of the interconnected ap-
propriate modules inside (or outside). The procedure is performed as follows. First the hierar-
chical pin finds all the waveforms internal to its parent module by requesting a current waveform
from all internal pins connected to its internal node. If these pins cannot locate a waveform in the
mapping table, the request is again forwarded. This recursive process continues until all internal
currents have been found. The hierarchical pin then performs a generic add operation on the
waveforms returned. This newly generated waveform is then assigned a simulation node and
cached in the mapping table for future reference. Generating waveforms only upon inquiry is

again part of Schema's creation on demand technique.

6.3.5 Locating Appropriate Models

The Generic Simulator locates an appropriate model, if any, for each appropriate module
taking part in the simulation. The model may be found in one of two places. It may already exist
within the module itself, cached from a previous simulation, or it may be found in the designer's
environment folder. In the latter case, if the appropriate model is of type, model without state, the
model itself is cached. If the appropriate model is of type, model with state, a copy of the model is
crecated and cached in the module.

The location procedure occurs as follows. The Generic Simulator simply asks each ap-
propriate module to find a model for the simulator selected under the current analysis context.
The module then looks to see if any of its cached models are appropriate. if not, the designer's
environment folder is passed the responsibility. Nexi the environment folder searches through its
subparts for a model folder with the correct module type. 1 not found, each subenvironment is
searched, and so on in a breadth first manner®. Once found, the model folder is asked to locate
an appropriate model. It then searches its models while asking each if it is appropriate. In elfect,

the responsibility for finding an appropriate model is passed naturally from the Generic Simulator,

4This is not currently the case, only one level of the environment folder hierarchy is searched.

53

b J n

Chapter 6 Generic Simulator
b
L
current-1 - current-sum
A A
| |
h . Y \ 4 new
imulatd
] D stmulation D simulation
¥ pin-1 .
A £ P
| Ve
| /
7/
Y
_______ | hierarchical y; 7
! appropriate module , 4
; module D_ - _l ‘—/ |
e, 1
W] _ {_1 _[A_J appropriate
_______ I madule
i appropriate ! [} I
- - |
i madule E:]—
| S VO 4
appropriate
module

A
{
U
v
D stmulation
A

pin-2

curreat-2

Figure 6-2: Summing current waveforms, current-1 and c:irrent-2,
to produce current-sum for pin of a hierarchical module.

to the modulz, to the environment folder, to the model folder, and finally onto the model. If the
appropriate model is found, either the model or a copy of the model is returned back to the
module, and cached for use in future simulations. The Generic Simu'atoer need never know

znything about the models.

Ouring the course of simulation initialization, the Generic Simulator notifies the initiator of
any inconsistencies, undefined quantities, or ambiguities in the information gathered by the
Generic Simuiator thus far. Simulation execution cannot proceed until all required inform ation is
supplied. The simulation initiator may need to subsequently add or modify waveforms, models, or

54

Chapter 6 Generic Simulator

parameter values. At the close of the Initialization Phase, data associated with the simulation is
locked from modification; all objects however are read-accessible to other processes, including

other Generic Simulation Processes.

6.4 Execution Phase

The Generic Simulator handles two basic types of simulators, internal and external. An
Internal Simulator directly manipulates the data objects present within the address space of the
Simulation Environment. Simulation execution may be interactively controlled. An external
simulator generates its own internal data structures in a separate address space. The following
sections briefly describe each simulation process and the role of the Generic Simulator in the

execution phase.

6.4.1 Internal Simulation

Because an internal simulator accesses the data objects directly, the Generic Simulator
need only call the simulation routine and pass it the flat module structure to be simulated. The
simulator then forwards many of the type-dependent tasks onto the data objects. In a Spice-like
circuit-level simulator, each module and input waveform calculates its fill-in values for the sparse
modified-nodal-analysis matrix. Each inodule’s model is responsible for performing calculations
based on its model, parameters, and some local state. Input waveforms compute a'voltage or
current value for a given timepoint. At higher levels of simulation, the simulator dynamically
schedules the sequence of operations, or events, as signal values propagate through the circuit.
This time the model computes an output waveform value, given some input waveform values. The
simulator propagates the calculated output to the input of interconnected modules by way of the

flat simulation nodes.

At each time step of execution, input waveforms are sampled, output values are produced
and sent directly to the output waveform dispiay objects. Simulation execution can be inter-
actively controlled by the simulation initiator. The user for example can visually observe the
cutput waveforms as the simulation proceeds, and may halt execution in the event of erratic
circuit behavior. An analysis tool could dynamically discontirue execution at the moment the
resulting waveforms fail to meet design specifications. Not only may the output wavetorms them-

selves be observed, but any combination of operations on these waveforms may also be ob-

55

Chapter 6 Generic Simulator

served, e.g., power consumption. Furthermore, with the waveform transformation capability of
the Simulation Environment, concurrent mixed-mode simulation is also possible. As output
waveforms of one region's simulation becomes available, they could be automatically used as

input to some other region's simulation.

6.4.2 External Simulation

An external simulation is performed in a separate address space. In the event the simulator
exists on a remote processor(s), the Generic Simulator first establishes a connection to the
simulation server, typically via a local network. Because more than one remote processor may
run the selected simulator, the Generic Simulator polls each of the existing processors to deter-
mine the best available resource. Spice2, for example, is highly portable and thus runs on many
different servers. Yet at any point in time, some servers may be fully-loaded with performing
simulations or some other computationally intensive task. The least-loaded, most efficient
machine should be prompted to service the simulation request.

Next the Generic Simulator requests a textual description from all data objects to be simu-
lated. Each appropriate module, waveform, model and parameter object then returns a textual
description to be forwarded by the Generic Simulator to the selected simulator. Simulation may
then proceed in a background process. During the course of execution, other activities or
processes occurring within the Simulation Environment may continue uninterrupted. Upon
ccempletion, some textual output is returned. Generic simulator sends the data to an output
parsing routine which interprets the output results and creates the uniform waveform data objects
in the Simulation Environment. And finally, the simulation initiator is notified of execution comple-

tion.

6.5 Completion Phase

During the Completion Phase, output waveforms are available ror inspection, analysis, and
as input to other Generic Simulation Processes. The waveforms are accessible to the initiator via
the module definition. !n the case of the user, the interface to waveforms attached to the module
definition is by way of the presentation viewer in combination with the waveform editor.
Convenient analysis tools summarize wavetorm data for example, not only for graphical display
and reduced storage, but also into a new model for use in a higher level simulations as described

in Chapter 7.
56

Chapter 6 Generic Simulator

A Generic Simulation Process may be extended, in which case the same flat structure is
reused. The same waveform objects are just appended with additional output points. Output
waveforms are collected together into an output waveform folder. Because simulation results are
dependent on the models used in the simulation, they are stored with the models in the user's

environment folder.

6.6 Summary

The Generic Simulation Process is a series of steps leading to a single simulation on the
Generic Simulator. The process occurs as follows. First ¢f all, waveforms are assigned to the
input terminals of a circuit module. The simulation initiator, either the user or analysis tool,
selects a specific simulator from among a rich variety. The Generic Simulator then prepares the
chosen region, the assigned waveforms, the appropriate models, and the module parameters for
the selected simulator. Next simulation is performed either directly on the data objects within the
Simulation Environment, or externally in a separate address space. Output waveforms are

created and made available for inspection, analysis, or as input te future simulations.

57

Chapter Seven

Discussion

7.1 Summary

The Simulation Environment provides a uniform CAD interface, a single user interface, and
mixed-mocie capability by using a common representation for simulation data objects: topologies,
models, and waveforms. The data objects, a Generic Simulator, and the user interface together

make up the Simulation Envircnment as implemented in Schema.

The object types and corresponding operations defined in the Simulation Environment are
patterned after the requirements of the simulators that use them. The addition of new types of
objects and their operators facilitates easy extensibility to additional simulators. The object types
and the layer of operations defined in the Simulation Environment serve as the foundation upon
which to build new analysis tools. Local coercion routines can be defined to simply transform one
type of waveform to another; this gives the Simulation Environment the capability to perform

mixed-mode simulation.

The Generic Simulator coordinates the flow of objects between each simulator and the
simulation initiator, the user or analysis tool, during the Generic Simulation Process. Waveforms
are assigned to the input terminals oi a circuit module. The simulation initiator selects a specitic
simulator from among a variety of simulators. The Generic Simulator then prepares the circuit
module, the assigned waveforms, the appropriate models, and the mcdule parameters for the
selected simulator. Next simulation is performed and finally output wavaforms are created and

made available for inspection, analysis, or as input to future simulaticns.

7.2 Implementation: The Simulation Environment Layer

The Simulation Environment is implemented in Schema using Symbolics 3600-family lisp
machines. All types are built on top of the Flavor System [Reference 85] provided by the Zetalisp
language. The object-oriented programming strategy established by the flavor system provides
the base layer upon which Schema is established.

58

Chapter 7 Discussion

Many of the basic iopology, model, and waveform data types and operations have already
been defined for the Simulation Environment in Schema. New types and operations are con-
tinually being added and refined to conform to the needs of additional tools built into the system.
It is hoped that this define-and-refine process will at some point converge to an optimum general
representation for data objects, where these representations form a solid layer upon which to

build other CAD tools for all areas of circuit design.

Currently two simulators have been implemented in the Simuiation Environment; an internal
transient simulator and the external circuit-level simulator Spice2. The internal simulator employs
the forward-euler method of integrating current into each capacitive node of a circuit. This
simulator does not have the accuracy of the detailed circuit analysis simuiator, but does have the
advantage of being much faster and highly interactive. Thus the designer is able to make initial
verification and performance estimates using the interactive internal cimulator and save the

detailed analysis for the remote simulation engine. Both make use analog waveforms.

The next step is the addition of the linear, switch, and logic-level simulators that use the
binary waveforms already defined in the Simulation Environment. For mixed-mode operation,
coercion rautines between analog and binary wavetorms must also be detined. These simulators,
together with the currently embedded transient simulators, constitute an essential layer of tools

upon which to integrate higher-level simulators.

7.3 Future Work: The Concurrent Mixed-Mode Simulation
Layer

Because errors may be introduced into simulation results by an unfortunate choice of
simulator at a critical point in the circuit, expert or automatic partitioning routines could be in-
dependently developed and placed on top of the Simulation Environment. The routines would
essentially divide large scale circuit modules into collections of submodules to be simulated at
different levels of abstraction. Critical paths and tightly-coupled subcircuits are grouped and
simulated at a detailed level, while less critical circuits are simulated more abstractly.

Concurrent mixed-mode internal simulation is now possible. The Simulation Environment
provides the foundation layer of simulators, a Generic Simulator, and uniform representations.

On top of this are three essentially independent layers. One provides the signal transformation

59

procedures for mixed-mode operation, another contains the different internal simulators and
general simulation algorithms, and finally the third embodies the expert partitioner. These provide
the base upon which to build a concurrent mixed-mode simulator. As waveform values of one
subcircuit's simulation become available, they could be used immediately as input to an intercon-

nected module's simulation.

As cited in Chapter 1, the main bottleneck with such a single-system approach is the limited
computational power. In Schema, the data objects exist in a common address space with the
potential for multiple processes. Circuit partitioning conveniently lends itself to parallel process-
ing and could thus spawn off new processes when necessary. Unfortunately however only one
processor is currently available. In the future, these processes may be mapped onto more power-
ful parallel, multi-processor systems. In the meantime, the Simulation Environment provides the
foundation upon which to develop these more sophisticated software layers.

7.4 Conclusion

This thesis has two main conclusions. First, designing the layer of general representations
is the most difficult task in developing the Simulation Environment. Second, once the general
representaticns have been designed for a specific simulation level, it is easy to integrate ad-
ditional simulators at that same level. In general, as each new simulation levei is incorporated into
the environment, the representations undergo a continual define-and-refine process. As a con-
sequence, the representations eventually evolve into the most general form satisfying the needs

of a comprehensive range of simulators and the needs of the user.

e

References

[Abelson 85] Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer
Programs, The MIT Press, 1985,

[Abramovici 83] Abramovici, M., Levendel, Y. H. and Menon, P. R., "A Logic Simulation
Machine," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems CAD-2(2):82-94, April 1983.

[Antognetti 84] Antognetti, P., Pederson, D. O. and de Man, H. (Eds.), Computer Design Aids for
VLS/, Martinus Nijhoff, 1984.

[Arnold 85]) Arnold, J. M., "Parallel Simulation of Digital LSI Circuits," Technical Report 333,
Massachusetts Institute of Technology, February 1985.

{Arnout 78] Arnout, G. and de Man, H., "The Use of Threshold Functions and Boolean-
Controlled Network Elements for Macromodelling of LSI Circuits,” IEEE Journal of Solid-
State Circuits SC- 13(6):326-332, June 1978.

(Borrione 83] Borrione, D., Humbert M., Le Faou, C., "Hierarchical Mixed-Mode Simulation
Mechanisms in the CASCADE Project," Anceau, F. and Aas E. J. (Ed.), VLS/ '83, Elsevier
Science Publishers B. V., August 16-19 1983, pp. 119-129.

[Bryant 81] Bryant, R. E., "A Switch-Level Simulation Model for Integrated Logic Circuits,” Ph.D.
Thesis, Massachusetts Institute of Technology, March 1981,

[Chawla 75} Chawla, B. R., Gummel, H. K. and Kozak, P., "MOTIS -- An MOS Timing Simulator,”
IEEL Transactions on C: -uits and Systems CAS-22(12):901-909, December 1975.

[Chen 84] Chen, C. F, Lo, C., Nham, . N. and Subramaniam, P., "The Second Genaration
MOTIS Mixed-Mode Simulator," Proceedings of the 21st Design Automation Conference,
ACM |EEE, June 25-27 1984, pp. 10-17.

[Cohen 76] Cohen, E., "Program Reference for SPICE2," ERL Memo ERL-M592, University of
California, Berkeley, June 1976.

{Daniel 82] Daniel, M. E. and Gwyn, C. W., "CAD Systems for IC Design," IEEE Transaclions on
Computer-Aided Design of Integrated Circuits and Systems CAD-1(1):2-12, January 1982.

{Deutsch 84] Deutsch, J. T. and Newton, A. R., "A Multiprocessor Implementation of Relaxation
Based FElectrical Circuit Simulation,” Proceedings of the 21st Design Automation
Conlference, ACM IEEE, June 25-27 1984, pp. 350-357.

[Doshi 84) Doshi, M. H., Sullivan, R. B. and Schuler, D. M., "THEMIS Logic Simulator - A Mix
Mode, Multi-Level, Hierarchical, Interactive Digital Circuit Simulator,” Procecdings of the
21st Design Automation Conference, ACM IEEE, June 2€-27 1984, pp. 24-31.

61

Reflerences

[Dumiugol 83] Domlugol, D., de Man, H. J., Stevens, P. and Schrooten, G. G., "Local Relaxation
Algorithms for Event-Driven Simulation of MOS Networks Including Assignable Delay
Modeling," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems CAD-2(3):193-202, July 1983.

[Fan 77] Fan, S. P., Hsueh, M. Y., Newton, A. R. and Pederson, D. O., "MOTIS-C: A New Circuit
Simulator for MOS LSI Circuits,” Proceedings of the IEEE International Symposium on
Circuits and Systems, IEEE, April 1977, pp. 700-703.

[Hafer 83] Haler, L. J. and Parker, A. C., "A Formal Method for the Specification, Analysis, and
Design of Register-Transfer Level Digital Logic," IEEE Transactions on Computer-Aide
Design of Integrated Circuits and Systems CAD-2(1):4-18, January 1983. :

[Hill 79] Hill, D. D. and vanCleemput, W. M., "SABLE: A Tool for Generating Structured, Multi-
Level Sinu_)lations.“ Proceedings of the 16th Design Automation Conference, ACM IEEE,
June 25-27 1979, pp. 272-279.

[Hill 80] Hill, D. D. and vanCleemput, W. M., "SABLE: Multi-Level Simulation for Hierarchical
Design," Proceedings of the IEEE International Symposium on Circuits and Systems,
|IEEE, April 1880, pp. 431-434.

[Lanthrop 85] Lanthrop, R. H. and Kirk, R. S., "An Extensible Object-Oriented Mixed-Mode
Functional Simuiation System,"” Proceedings of the 22nd Design Automation Conference,
ACM IEEE, June 1985, pp. 630-636.

[Lewke 83] Lewke, K. and Rammig, F. J., "Description and Simulation of MOS Devices in
Register Transfer Languages,” Anceau, F. and Aas E. J. (Ed.), VL S/ '83, Elsevier Science
Publishers B. V., August 16-19 1983, pp. 73-83.

[Nagel 75] Nagel, L. W., "SPICE2: A Computer Program to Simulate Semiconductor Circuits,"
ERL Memo ERL-M520, University of California, Berkeley, May 1975.

[Nestor 82] Nestor, J. A. and Thomas, D. E., "Defining and Implemeriting a Multilevel Design
Representation with Simulation Applications,” Proceedings of the 19th Design Automation
Conference, ACMIEEE, June 14-16 1982, pp. 740-746.

[Newton 787 Newton, A. R., "The Simulation of Large-Scale Integrated Circuits,” ERL Memo
ERL-M78/52, University of California, Berkeley. July 1978.

[Newton 7¢] Newton, A. R., "Techniques for the Simulation of Large Sc.le Integrated Circuits,”
[EEE Transactions on Circuits and Systems CAS-26(0):741 749, September 1979,

[Newton 84] Newton, A. R. and Songiovanni-Vincentelli, A L. “"Rok.xation Based Electrical
Simulation,” IEEE Transactions on Computer Anged Design of integrated Circuits and
Systems CAD-3(4):308-331, October 1984.

[Pfister 82] Pfister, G. F.. "The Yorktown Simulation Fngme.” Procecdings of the 19th Design
Automation Confercnce, ACM IELCE, June 1416 1982 pp 55 59

[Reterence BS] Reference Guide to Symbolics Lisp, 1985

[Solden 86] Solden, S., "Waveforms as First-Class Obyjects in Schema.” May 1986. Bachelor of
Science Thesis.

62

C e - - —

References

[Terman 83) Terman, C. J., "Simulation Tools for Digital LS|l Design,” Ph.D. Thesis,
Massachusetts Institute of Technology, September 1983.

[Thomas 83] Thomas, D. E. and Nestor, J. A., "Defining and Inplementing a Multilevel Design
Representation with Simulation Applications,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-2(3):135-145, July 1983,

[Weeks 73] Weeks, W., et al, "Algorithms for ASTAP -- A Network Analysis Program," IEEE
Transactions on Circuit Theory CT-20(6):628-634, November 1973.

{Williams 84] Williams, B. C., "Qualitative Analysis of MOS Circuits," Technical Report 767,
Massachusetts Institute of Technology, July 1984.

[Zippel 85] Zippel, R. E. and Clark, G. C., "Schema - An Architecture for Knowledge Based
CAL," International Conference on Computer-Aided Design, |IEEE, November 1985, pp.
50-52.

Director

OFFICIAL DISTRIBUTION LIST

Information Processing Technigues Office

Defense Advance
1400 Wilson Bou
Arlington, VA

Office of Naval
800 North Quinc
Arlincton, VA

Attn: Dr. R. G

Director, Code
Naval Research
Wasnhinzten, DC

Defense Technic
Cameron Station
Alexandria, VA

Naticnal Scienc
Office of Compu
1800 C. Street,
wWashirncton, DC
Attn: Prograr

Dr. E.B. Rovce,
Head, Research
Naval Wweapons C
China Lake, CA

Dr. G. Hopper,
NAVDAC-00H

d Research Projects Agency
levard
22209

Research

y Street

22217

rafton, Code 433

2627
Laboratory
20375

al Information Center

22314

e Foundation
ting Activities
N.W.
20550
Director

Code 38
Department
enter

23555

USNR

Department of the Navy

Washington, DC

20374

[\%)

Copies

Copies

Copies

Copies

Copies

Copy

Copy

L sl

